Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Ecol Evol ; 14(4): e11217, 2024 Apr.
Article En | MEDLINE | ID: mdl-38628916

While territoriality is one of the key mechanisms influencing carnivore space use, most studies quantify resource selection and movement in the absence of conspecific influence or territorial structure. Our analysis incorporated social information in a resource selection framework to investigate mechanisms of territoriality and intra-specific competition on the habitat selection of a large, social carnivore. We fit integrated step selection functions to 3-h GPS data from 12 collared African wild dog packs in the Okavango Delta and estimated selection coefficients using a conditional Poisson likelihood with random effects. Packs selected for their neighbors' 30-day boundary (defined as their 95% kernel density estimate) and for their own 90-day core (defined as their 50% kernel density estimate). Neighbors' 30-day boundary had a greater influence on resource selection than any habitat feature. Habitat selection differed when they were within versus beyond their neighbors' 30-day boundary. Pack size, pack tenure, pup presence, and seasonality all mediated how packs responded to neighbors' space use, and seasonal dynamics altered the strength of residency. While newly-formed packs and packs with pups avoided their neighbors' boundary, older packs and those without pups selected for it. Packs also selected for the boundary of larger neighboring packs more strongly than that of smaller ones. Social structure within packs has implications for how they interact with conspecifics, and therefore how they are distributed across the landscape. Future research should continue to investigate how territorial processes are mediated by social dynamics and, in turn, how territorial structure mediates resource selection and movement. These results could inform the development of a human-wildlife conflict (HWC) mitigation tool by co-opting the mechanisms of conspecific interactions to manage space use of endangered carnivores.

2.
J Math Biol ; 88(5): 59, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589609

Most animals live in spatially-constrained home ranges. The prevalence of this space-use pattern in nature suggests that general biological mechanisms are likely to be responsible for their occurrence. Individual-based models of animal movement in both theoretical and empirical settings have demonstrated that the revisitation of familiar areas through memory can lead to the formation of stable home ranges. Here, we formulate a deterministic, mechanistic home range model that includes the interplay between a bi-component memory and resource preference, and evaluate resulting patterns of space-use. We show that a bi-component memory process can lead to the formation of stable home ranges and control its size, with greater spatial memory capabilities being associated with larger home range size. The interplay between memory and resource preferences gives rise to a continuum of space-use patterns-from spatially-restricted movements into a home range that is influenced by local resource heterogeneity, to diffusive-like movements dependent on larger-scale resource distributions, such as in nomadism. Future work could take advantage of this model formulation to evaluate the role of memory in shaping individual performance in response to varying spatio-temporal resource patterns.


Ecosystem , Homing Behavior , Animals , Homing Behavior/physiology , Memory , Movement
3.
Emerg Infect Dis ; 28(12): 2577-2580, 2022 12.
Article En | MEDLINE | ID: mdl-36322954

We report results from serologic surveillance for exposure to SARS-CoV-2 among 1,237 wild rodents and small mammals across Europe. All samples were negative, with the possible exception of 1. Despite suspected potential for human-to-rodent spillover, no evidence of widespread SARS-CoV-2 circulation in rodent populations has been reported to date.Esitämme tulokset serologisesta tutkimuksesta, jossa seulottiin SARS-CoV-2 tartuntojen varalta 1,237 luonnonvaraista jyrsijää ja piennisäkästä eri puolilta Eurooppaa. Kaikki näytteet olivat negatiivisia, yhtä näytettä lukuun ottamatta. SARS-CoV-2:n läikkymisen ihmisistä jyrsijöihin on arveltu olevan mahdollista, mutta todisteet viruksen laajamittaisesta leviämisestä jyrsijäpopulaatioissa puuttuvat.


COVID-19 , Animals , Humans , COVID-19/epidemiology , SARS-CoV-2 , Rodentia , Antibodies, Viral , Europe/epidemiology
4.
Ecol Lett ; 25(4): 716-728, 2022 Apr.
Article En | MEDLINE | ID: mdl-35099847

Most animals live in home ranges, and memory is thought to be an important process in their formation. However, a general memory-based model for characterising and predicting home range emergence has been lacking. Here, we use a mechanistic movement model to: (1) quantify the role of memory in the movements of a large mammal reintroduced into a novel environment, and (2) predict observed patterns of home range emergence in this experimental setting. We show that an interplay between memory and resource preferences is the primary process influencing the movements of reintroduced roe deer (Capreolus capreolus). Our memory-based model fitted with empirical data successfully predicts the formation of home ranges, as well as emergent properties of movement and spatial revisitation observed in the reintroduced animals. These results provide a mechanistic framework for combining memory-based movements, resource preferences, and the formation of home ranges in nature.


Deer , Homing Behavior , Animals , Movement
5.
J Anim Ecol ; 91(1): 182-195, 2022 01.
Article En | MEDLINE | ID: mdl-34668571

When navigating heterogeneous landscapes, large carnivores must balance trade-offs between multiple goals, including minimizing energetic expenditure, maintaining access to hunting opportunities and avoiding potential risk from humans. The relative importance of these goals in driving carnivore movement likely changes across temporal scales, but our understanding of these dynamics remains limited. Here we quantified how drivers of movement and habitat selection changed with temporal grain for two large carnivore species living in human-dominated landscapes, providing insights into commonalities in carnivore movement strategies across regions. We used high-resolution GPS collar data and integrated step selection analyses to model movement and habitat selection for African lions Panthera leo in Laikipia, Kenya and pumas Puma concolor in the Santa Cruz Mountains of California across eight temporal grains, ranging from 5 min to 12 hr. Analyses considered landscape covariates that are related to energetics, resource acquisition and anthropogenic risk. For both species, topographic slope, which strongly influences energetic expenditure, drove habitat selection and movement patterns over fine temporal grains but was less important at longer temporal grains. In contrast, avoiding anthropogenic risk during the day, when risk was highest, was consistently important across grains, but the degree to which carnivores relaxed this avoidance at night was strongest for longer term movements. Lions and pumas modified their movement behaviour differently in response to anthropogenic features: lions sped up while near humans at fine temporal grains, while pumas slowed down in more developed areas at coarse temporal grains. Finally, pumas experienced a trade-off between energetically efficient movement and avoiding anthropogenic risk. Temporal grain is an important methodological consideration in habitat selection analyses, as drivers of both movement and habitat selection changed across temporal grain. Additionally, grain-dependent patterns can reflect meaningful behavioural processes, including how fitness-relevant goals influence behaviour over different periods of time. In applying multi-scale analysis to fine-resolution data, we showed that two large carnivore species in very different human-dominated landscapes balanced competing energetic and safety demands in largely similar ways. These commonalities suggest general strategies of landscape use across large carnivore species.


Carnivora , Lions , Puma , Animals , Ecosystem , Movement , Puma/physiology
6.
Mov Ecol ; 9(1): 57, 2021 Nov 13.
Article En | MEDLINE | ID: mdl-34774097

BACKGROUND: Human disturbance alters animal movement globally and infrastructure, such as roads, can act as physical barriers that impact behaviour across multiple spatial scales. In ungulates, roads can particularly hamper key ecological processes such as dispersal and migration, which ensure functional connectivity among populations, and may be particularly important for population performance in highly human-dominated landscapes. The impact of roads on some aspects of ungulate behaviour has already been studied. However, potential differences in response to roads during migration, dispersal and home range movements have never been evaluated. Addressing these issues is particularly important to assess the resistance of European landscapes to the range of wildlife movement processes, and to evaluate how animals adjust to anthropogenic constraints. METHODS: We analysed 95 GPS trajectories from 6 populations of European roe deer (Capreolus capreolus) across the Alps and central Europe. We investigated how roe deer movements were affected by landscape characteristics, including roads, and we evaluated potential differences in road avoidance among resident, migratory and dispersing animals (hereafter, movement modes). First, using Net Squared Displacement and a spatio-temporal clustering algorithm, we classified individuals as residents, migrants or dispersers. We then identified the start and end dates of the migration and dispersal trajectories, and retained only the GPS locations that fell between those dates (i.e., during transience). Finally, we used the resulting trajectories to perform an integrated step selection analysis. RESULTS: We found that roe deer moved through more forested areas during the day and visited less forested areas at night. They also minimised elevation gains and losses along their movement trajectories. Road crossings were strongly avoided at all times of day, but when they occurred, they were more likely to occur during longer steps and in more forested areas. Road avoidance did not vary among movement modes and, during dispersal and migration, it remained high and consistent with that expressed during home range movements. CONCLUSIONS: Roads can represent a major constraint to movement across modes and populations, potentially limiting functional connectivity at multiple ecological scales. In particular, they can affect migrating individuals that track seasonal resources, and dispersing animals searching for novel ranges.

7.
Curr Biol ; 31(17): 3952-3955.e3, 2021 09 13.
Article En | MEDLINE | ID: mdl-34197728

Humans have outsized effects on ecosystems, in part by initiating trophic cascades that impact all levels of the food chain.1,2 Theory suggests that disease outbreaks can reverse these impacts by modifying human behavior,3,4 but this has not yet been tested. The COVID-19 pandemic provided a natural experiment to test whether a virus could subordinate humans to an intermediate link in the trophic chain, releasing a top carnivore from a landscape of fear. Shelter-in-place orders in the Bay Area of California led to a 50% decline in human mobility, which resulted in a relaxation of mountain lion aversion to urban areas. Rapid changes in human mobility thus appear to act quickly on food web functions, suggesting an important pathway by which emerging infectious diseases will impact not only human health but ecosystems as well.


Behavior, Animal , COVID-19/prevention & control , Puma , Animals , Automobile Driving/statistics & numerical data , California , Cities , Ecosystem , Fear , Female , Geographic Information Systems , Humans , Male , Physical Distancing , Quarantine
8.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article En | MEDLINE | ID: mdl-33837149

Many animals restrict their movements to a characteristic home range. This constrained pattern of space use is thought to result from the foraging benefits of memorizing the locations and quality of heterogeneously distributed resources. However, due to the confounding effects of sensory perception, the role of memory in home-range movement behavior lacks definitive evidence in the wild. Here, we analyze the foraging decisions of a large mammal during a field resource manipulation experiment designed to disentangle the effects of memory and perception. We parametrize a mechanistic model of spatial transitions using experimental data to quantify the cognitive processes underlying animal foraging behavior and to predict how individuals respond to resource heterogeneity in space and time. We demonstrate that roe deer (Capreolus capreolus) rely on memory, not perception, to track the spatiotemporal dynamics of resources within their home range. Roe deer foraging decisions were primarily based on recent experience (half-lives of 0.9 and 5.6 d for attribute and spatial memory, respectively), enabling them to adapt to sudden changes in resource availability. The proposed memory-based model was able to both quantify the cognitive processes underlying roe deer behavior and accurately predict how they shifted resource use during the experiment. Our study highlights the fact that animal foraging decisions are based on incomplete information on the locations of available resources, a factor that is critical to developing accurate predictions of animal spatial behavior but is typically not accounted for in analyses of animal movement in the wild.


Deer/physiology , Feeding Behavior , Memory , Animals , Cognition , Decision Making , Movement
9.
Ecology ; 102(5): e03319, 2021 05.
Article En | MEDLINE | ID: mdl-33636010

Competitively dominant carnivore species can limit the population sizes and alter the behavior of inferior competitors. Established mechanisms that enable carnivore coexistence include spatial and temporal avoidance of dominant predator species by subordinates, and dietary niche separation. However, spatial heterogeneity across landscapes could provide inferior competitors with refuges in the form of areas with lower competitor density and/or locations that provide concealment from competitors. Here, we combine temporally overlapping telemetry data from dominant lions (Panthera leo) and subordinate African wild dogs (Lycaon pictus) with high-resolution remote sensing in an integrated step selection analysis to investigate how fine-scaled landscape heterogeneity might facilitate carnivore coexistence in South Africa's Hluhluwe-iMfolozi Park, where both predators occur at exceptionally high densities. We ask whether the primary lion-avoidance strategy of wild dogs is spatial avoidance of lions or areas frequented by lions, or if wild dogs selectively use landscape features to avoid detection by lions. Within this framework, we also test whether wild dogs rely on proactive or reactive responses to lion risk. In contrast to previous studies finding strong spatial avoidance of lions by wild dogs, we found that the primary wild dog lion-avoidance strategy was to select landscape features that aid in avoidance of lion detection. This habitat selection was routinely used by wild dogs, and especially when in areas and during times of high lion-encounter risk, suggesting a proactive response to lion risk. Our findings suggest that spatial landscape heterogeneity could represent an alternative mechanism for carnivore coexistence, especially as ever-shrinking carnivore ranges force inferior competitors into increased contact with dominant species.


Canidae , Carnivora , Lions , Animals , Ecosystem , Telemetry
10.
Animals (Basel) ; 10(11)2020 Nov 10.
Article En | MEDLINE | ID: mdl-33182794

Winter supplemental feeding of ungulates potentially alters their use of resources and ecological interactions, yet relatively little is known about the patterns of feeding sites use by target populations. We used camera traps to continuously monitor winter and spring feeding site use in a roe deer population living in a peri-urban area in Northern Italy. We combined circular statistics with generalized additive and linear mixed models to analyze the diel and seasonal pattern of roe deer visits to feeding sites, and the behavioral drivers influencing visit duration. Roe deer visits peaked at dawn and dusk, and decreased from winter to spring when vegetation regrows and temperature increases. Roe deer mostly visited feeding sites solitarily; when this was not the case, they stayed longer at the site, especially when conspecifics were eating, but maintained a bimodal diel pattern of visits. These results support an opportunistic use of feeding sites, following seasonal cycles and the roe deer circadian clock. Yet, the attractiveness of these artificial resources has the potential to alter intra-specific relationships, as competition for their use induces gatherings and may extend the contact time between individuals, with potential behavioral and epidemiological consequences.

11.
Sci Rep ; 10(1): 11946, 2020 07 20.
Article En | MEDLINE | ID: mdl-32686691

The link between spatio-temporal resource patterns and animal movement behaviour is a key ecological process, however, limited experimental support for this connection has been produced at the home range scale. In this study, we analysed the spatial responses of a resident large herbivore (roe deer Capreolus capreolus) using an in situ manipulation of a concentrated food resource. Specifically, we experimentally altered feeding site accessibility to roe deer and recorded (for 25 animal-years) individual responses by GPS tracking. We found that, following the loss of their preferred resource, roe deer actively tracked resource dynamics leading to more exploratory movements, and larger, spatially-shifted home ranges. Then, we showed, for the first time experimentally, the importance of site fidelity in the maintenance of large mammal home ranges by demonstrating the return of individuals to their familiar, preferred resource despite the presence of alternate, equally-valuable food resources. This behaviour was modulated at the individual level, where roe deer characterised by a high preference for feeding sites exhibited more pronounced behavioural adjustments during the manipulation. Together, our results establish the connections between herbivore movements, space-use, individual preference, and the spatio-temporal pattern of resources in home ranging behaviour.


Behavior, Animal , Herbivory , Animals , Deer , Homing Behavior , Models, Theoretical
12.
J Anim Ecol ; 89(6): 1329-1339, 2020 06.
Article En | MEDLINE | ID: mdl-32144759

Restricting movements to familiar areas should increase individual fitness as it provides animals with information about the spatial distribution of resources and predation risk. While the benefits of familiarity for locating resources have been reported previously, the potential value of familiarity for predation avoidance has been accorded less attention. It has been suggested that familiarity should be beneficial for anti-predator behaviour when direct cues of predation risk are unclear and do not allow prey to identify well-defined spatial refuges. However, to our knowledge, this hypothesis has yet to be tested. Here, we assessed how site familiarity, measured as the intensity of use of a given location, is associated with the probability of roe deer Capreolus capreolus being killed by two predators with contrasting hunting tactics, the Eurasian lynx Lynx lynx and human hunters. While risk of human hunting was confined to open habitats, risk of lynx predation was more diffuse, with no clear refuge areas. We estimated cause-specific mortality rates in a competing risk framework for 212 GPS-collared roe deer in two ecologically distinct areas of Central Europe to test the hypothesis that the daily risk of being killed by lynx or hunters should be lower in areas of high familiarity. We found strong evidence that site familiarity reduces the risk of being predated by lynx, whereas the evidence that the risk of being hunted is linked to site familiarity was weak. We suggest that local knowledge about small-scale differences in predation risk and information about efficient escape routes affect an individual's ability to avoid or escape an attack by an ambush predator. Our study emphasizes the role of site familiarity in determining the susceptibility of prey to predation. Further research will be required to understand better how a cognitive map of individual spatial information is beneficial for avoiding predation in the arms race that drives the predator-prey shell game.


Deer , Lynx , Animals , Ecosystem , Europe , Herbivory , Predatory Behavior
13.
J Environ Manage ; 260: 110068, 2020 Apr 15.
Article En | MEDLINE | ID: mdl-32090812

1. Primary objectives of national parks usually include both, the protection of natural processes and species conservation. When these objectives conflict, as occurs because of the cascading effects of large mammals (i.e., ungulates and large carnivores) on lower trophic levels, park managers have to decide upon the appropriate management while considering various local circumstances. 2. To analyse if ungulate management strategies are in accordance with the objectives defined for protected areas, we assessed the current status of ungulate management across European national parks using the naturalness concept and identified the variables that influence the management. 3. We collected data on ungulate management from 209 European national parks in 29 countries by means of a large-scale questionnaire survey. Ungulate management in the parks was compared by creating two naturalness scores. The first score reflects ungulate and large carnivore species compositions, and the second evaluates human intervention on ungulate populations. We then tested whether the two naturalness score categories are influenced by the management objectives, park size, years since establishment, percentage of government-owned land, and human impact on the environment (human influence index) using two generalized additive mixed models. 4. In 67.9% of the national parks, wildlife is regulated by culling (40.2%) or hunting (10.5%) or both (17.2%). Artificial feeding occurred in 81.3% of the national parks and only 28.5% of the national parks had a non-intervention zone covering at least 75% of the area. Furthermore, ungulate management differed greatly among the different countries, likely because of differences in hunting traditions and cultural and political backgrounds. Ungulate management was also influenced by park size, human impact on the landscape, and national park objectives, but after removing these variables from the full model the reduced models only showed a small change in the deviance explained. In areas with higher anthropogenic pressure, wildlife diversity tended to be lower and a higher number of domesticated species tended to be present. Human intervention (culling and artificial feeding) was lower in smaller national parks and when park objectives followed those set by the International Union for the Conservation of Nature (IUCN). 5. Our study shows that many European national parks do not fulfil the aims of protected area management as set by IUCN guidelines. In contrast to the USA and Canada, Europe currently has no common ungulate management policy within national parks. This lack of a common policy together with differences in species composition, hunting traditions, and cultural or political context has led to differences in ungulate management among European countries. To fulfil the aims and objectives of national parks and to develop ungulate management strategies further, we highlight the importance of creating a more integrated European ungulate management policy to meet the aims of national parks.


Conservation of Natural Resources , Parks, Recreational , Animals , Canada , Europe , Humans , Mammals
14.
J Anim Ecol ; 89(12): 2746-2749, 2020 12.
Article En | MEDLINE | ID: mdl-33615481

In Focus: Ellison, N., Hatchwell, B. J., Biddiscombe, S. J., Napper, C. J., & Potts, J. R. (2020). Mechanistic home range analysis reveals drivers of space use patterns for a non-territorial passerine. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.13292. Most animals for which space use has been studied restrict their movements into a constrained spatial area: their home range. The ubiquity of this space-use pattern suggests that home ranges are adaptive in a wide range of ecological contexts, and that they likely arise from general biological mechanisms. In this issue, Ellison et al. use a mechanistic home range analysis (MHRA) to uncover the drivers underlying home range patterns in a passerine that is non-territorial. They show that a model integrating both resource preferences (specifically, an attraction to woodland centre), and memory-mediated conspecific avoidance can capture the space-use patterns observed in a wild population of long-tailed tits Aegithalos caudatus. In doing so, their analysis extends the applicability of MHRA to capturing and predicting home range patterns beyond the previously studied cases where spatially exclusive home ranges emerge from scent mark-mediated avoidance responses to neighbouring groups.


Ecology , Homing Behavior , Animals , Memory , Movement , Pheromones
...